p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(a1(x1)), x2)
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(a1(x1)), x2)
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(a1(x1)), x2)
Used ordering: Polynomial interpretation [21]:
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
POL(P2(x1, x2)) = x2
POL(a1(x1)) = 2
POL(b1(x1)) = 0
POL(p2(x1, x2)) = 1 + 2·x1 + x2
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
P2(a1(x0), p2(a1(b1(x1)), x2)) -> P2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))
p2(a1(x0), p2(a1(b1(x1)), x2)) -> p2(a1(b1(a1(x2))), p2(a1(a1(x1)), x2))